A Dynamic Analysis of Interactive Rationality

Eric Pacuit

Center for Logic and Philosophy of Science
Tilburg University
ai.stanford.edu/~epacuit

(Joint work with Olivier Roy)
March 28, 2011
"The fundamental insight of game theory [is] that a rational player must take into account that the players reason about each other in deciding how to play" [pg. 81]
R. Aumann and J. Dreze. Rational expectations in games. American Economic Review, Vol. 98, pgs. $72-86$ (2008).
"The fundamental insight of game theory [is] that a rational player must take into account that the players reason about each other in deciding how to play" [pg. 81]
R. Aumann and J. Dreze. Rational expectations in games. American Economic Review, Vol. 98, pgs. $72-86$ (2008).

Exactly how the players incorporate the fact that they are interacting with other (actively reasoning) rational agents is the subject of much debate.

Reasoning in Games

- Brian Skyrms' models of "dynamic deliberation"
- Ken Binmore's analysis of "eductive reasoning"
- Robin Cubitt and Robert Sugden's "common modes of reasoning"

Different framework, common thought: the "rational solutions" of a game are the result of individual (rational) decisions in specific informational "contexts".

Two Faces of Rationality

1. Rationality is a matter of reasons
2. Rationality is a matter of reliability

Two Faces of Rationality

1. Rationality is a matter of reasons
2. Rationality is a matter of reliability
"Neither theme alone exhausts our notion of rationality. Reasons without reliability seem emtpy, reliability without reasons seems blind. In tandem these make a powerful unit, but how exactly are they related and why?"
(pg. 64)
R. Nozick. The Nature of Rationality. Princeton University Press, 1993.

Two Faces of Rationality

1. Rationality is a matter of reasons
2. Rationality is a matter of reliability
"It is important to understand that we have two forms of irrationality in this paper...For us, a player is rational if he optimizes and also rules nothing out. So irrationality might mean not optimizing. But it can also mean optimizing while not considering everything possible."
(pg. 314)
A. Brandenburger, A. Friedenberg and H. J. Keisler. Admissibility in Games. Econometrica, 76:2, 2008, pgs. 307-352.

A player can be rationally criticized for

A player can be rationally criticized for

1. not choosing what is best or what is rationally permissible, given one's information.

A player can be rationally criticized for

1. not choosing what is best or what is rationally permissible, given one's information. What counts as "best" or what is choice-worthy is determined by the reasons that the players have and by the normative facts that hold in a given context.

A player can be rationally criticized for

1. not choosing what is best or what is rationally permissible, given one's information. What counts as "best" or what is choice-worthy is determined by the reasons that the players have and by the normative facts that hold in a given context.
2. not reasoning to a "proper" context.

A player can be rationally criticized for

1. not choosing what is best or what is rationally permissible, given one's information. What counts as "best" or what is choice-worthy is determined by the reasons that the players have and by the normative facts that hold in a given context.
2. not reasoning to a "proper" context. There may be rational pressure for or against making certain substantive assumptions about the beliefs of one's opponents, for instance to always entertain the possibility that one of the players might not choose optimally.

A player can be rationally criticized for

1. not choosing what is best or what is rationally permissible, given one's information. What counts as "best" or what is choice-worthy is determined by the reasons that the players have and by the normative facts that hold in a given context.
2. not reasoning to a "proper" context. There may be rational pressure for or against making certain substantive assumptions about the beliefs of one's opponents, for instance to always entertain the possibility that one of the players might not choose optimally.

Plan for Today

- Describing the "informational context" of a game
- A puzzle about admissibility
- Flat vs. dynamic analysis

Describing the "Informational Context"

Describing the "Informational Context"

- Various states of information disclosure.

Describing the "Informational Context"

- Various states of information disclosure.
- ex ante, ex interim, ex post

Describing the "Informational Context"

- Various states of information disclosure.
- ex ante, ex interim, ex post
- Various "types" of information:

Describing the "Informational Context"

- Various states of information disclosure.
- ex ante, ex interim, ex post
- Various "types" of information:
- imperfect information about the play of the game
- incomplete information about the structure of the game
- strategic information (what will the other players do?)
- higher-order information (what are the other players thinking?)

Describing the "Informational Context"

- Various states of information disclosure.
- ex ante, ex interim, ex post
- Various "types" of information:
- imperfect information about the play of the game
- incomplete information about the structure of the game
- strategic information (what will the other players do?)
- higher-order information (what are the other players thinking?)
- Varieties of informational attitudes

Describing the "Informational Context"

- Various states of information disclosure.
- ex ante, ex interim, ex post
- Various "types" of information:
- imperfect information about the play of the game
- incomplete information about the structure of the game
- strategic information (what will the other players do?)
- higher-order information (what are the other players thinking?)
- Varieties of informational attitudes
- hard ("knowledge")
- soft ("beliefs")

Describing the "Informational Context"

- Various states of information disclosure.
- ex ante, ex interim, ex post
- Various "types" of information:
- imperfect information about the play of the game
- incomplete information about the structure of the game
- strategic information (what will the other players do?)
- higher-order information (what are the other players thinking?)
- Varieties of informational attitudes
- hard ("knowledge")
- soft ("beliefs")

Game Models

Game G

Game Models

Strategy Space

Game Models

Strategy Space

Game Models

Game Models

Game Models

Game Models

Some Key Properties

- Knowledge of own choice the agents choices are uniform in their information sets

Some Key Properties

- Knowledge of own choice the agents choices are uniform in their information sets
- The structure of the game is commonly known the map from states to strategy profiles is onto

Some Key Properties

- Knowledge of own choice the agents choices are uniform in their information sets
- The structure of the game is commonly known the map from states to strategy profiles is onto
- Common prior all agents have the same prior probability function

Some Key Properties

- Knowledge of own choice the agents choices are uniform in their information sets
- The structure of the game is commonly known the map from states to strategy profiles is onto
- Common prior all agents have the same prior probability function
S. Morris. The common prior assumption in economic theory. Economics and Philosophy, 11, pgs. 227-254, 1995.

Some Key Properties

- Knowledge of own choice the agents choices are uniform in their information sets
- The structure of the game is commonly known the map from states to strategy profiles is onto
- Common prior all agents have the same prior probability function
S. Morris. The common prior assumption in economic theory. Economics and Philosophy, 11, pgs. 227-254, 1995.
- Common Knowledge of "rational choice" there is no "Ann-Bob path" that leads outside of Rat

Other Natural Properties...

- Only play admissible strategies
- If two strategies are rational for an opponent, then neither can be "ruled out"
- Do not initially rule out any types of the other players

Other Natural Properties...

- Only play admissible strategies
- If two strategies are rational for an opponent, then neither can be "ruled out" (Privacy of Tie Breaking)
- Do not initially rule out any types of the other players

...Lead to Puzzles and Paradoxes

L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic Behavior (1992).
R. Cubitt and R. Sugden. Rationally Justiable Play and the Theory of Non-cooperative games. Economic Journal, 104, pgs. 798-803, 1994.
R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common knowledge of rationality. Manuscript, 2011.
A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games. Studia Logica (2006).

Admissibility

The condition that the players incorporate admissibility into their rationality calculations seems to conflict with the condition that the players think the other players are rational (there is a tension between admissibility and strategic reasoning)

Admissibility

The condition that the players incorporate admissibility into their rationality calculations seems to conflict with the condition that the players think the other players are rational (there is a tension between admissibility and strategic reasoning)

Does assuming that it is commonly known that players play only admissible strategies lead to a process of iterated removal of weakly dominated strategies?

Admissibility

The condition that the players incorporate admissibility into their rationality calculations seems to conflict with the condition that the players think the other players are rational (there is a tension between admissibility and strategic reasoning)

Does assuming that it is commonly known that players play only admissible strategies lead to a process of iterated removal of weakly dominated strategies? No!
L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic Behavior (1992).

Iterated Admissibility

$$
\begin{aligned}
& \text { Bob } \\
& L \quad R
\end{aligned}
$$

Iterated Admissibility

T weakly dominates B

Iterated Admissibility

Then L strictly dominates R.

Iterated Admissibility

The IA set

Iterated Admissibility

But, now what is the reason for not playing B?

Common Knowledge of Admissibility

There is no model of this game with common knowledge of admissibility.

Common Knowledge of Admissibility

The "full" model of the game

Common Knowledge of Admissibility

The "full" model of the game: B is not admissible given Ann's information

Common Knowledge of Admissibility

What is wrong with this model?

Common Knowledge of Admissibility

$$
\begin{aligned}
& L^{\text {Bob }} R \\
& T, L \\
& T, R \\
& T,\left\{\begin{array}{r}
\bullet \\
\bullet
\end{array}\right. \\
& B, L \\
& \text { B, R } \\
& B,\{L, R\} \\
& \{T, B\}, L \quad\{T, B\}, R \quad\{T, B\},\{L, R\}
\end{aligned}
$$

Moving to choice sets.

Common Knowledge of Admissibility

Moving to choice sets.

Common Knowledge of Admissibility

Ann thinks: Bob has a reason to play L OR Bob has a reason to play R OR Bob has not yet settled on a choice

Common Knowledge of Admissibility

Still there is no model with common knowledge that players have admissibility-based reasons

Common Knowledge of Admissibility

there is a reason to play T provided Ann considers it possible that Bob might play R (actually three cases to consider here)

Common Knowledge of Admissibility

But there is a reason to play R provided it is possible that Ann has a reason to play B

Common Knowledge of Admissibility

But, there is no reason to play B if there is a reason for Bob to play R.

Common Knowledge of Admissibility

R can be ruled out unless there is a possibility that B will be played.

Common Knowledge of Admissibility

there is no reason to play B if R is a possible play for Bob.

Common Knowledge of Admissibility

$$
\begin{aligned}
& L^{\text {Bob }} \quad R
\end{aligned}
$$

${ }_{\bullet}^{T}, R$
$T,\{L, R\}$
B, L
B, R
$B,\{L, R\}$
$\{T, B\}, L \quad\{T, B\}, R \quad\{T, B\},\{L, R\}$

We can check all the possibilities and see we cannot find a model...

More Puzzles

R. Cubitt and R. Sugden. Rationally Justiable Play and the Theory of Non-cooperative games. Economic Journal, 104, pgs. 798-803, 1994.
R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of common knowledge of rationality. Manuscript, 2011.

Another Puzzle

Another Puzzle

There is no Bayesian model of the above game satisfying privacy of tie-breaking.

Another Puzzle

1. If 1 considers out ${ }_{2}$ possible, then it is common knowledge that out t_{1} is not possible

Another Puzzle

1. If 1 considers out ${ }_{2}$ possible, then it is common knowledge that out t_{1} is not possible
2. If 2 considers out 3 possible, then it is common knowledge that out t_{2} is not possible

Another Puzzle

1. If 1 considers out 2 possible, then it is common knowledge that out t_{1} is not possible
2. If 2 considers out 3 possible, then it is common knowledge that out t_{2} is not possible
3. If 3 considers out ${ }_{1}$ possible, then it is common knowledge that out ${ }_{3}$ is not possible

Another Puzzle

4. If 1 does not consider out ${ }_{2}$ possible, then $2 \& 3$ must consider $i n_{1}$ \& out t_{1} possible

Another Puzzle

4. If 1 does not consider out ${ }_{2}$ possible, then $2 \& 3$ must consider $i n_{1}$ \& out or $_{1}$ possible
5. If 2 does not consider out ${ }_{3}$ possible, then $1 \& 3$ must consider in_{2} \& out t_{2} possible

Another Puzzle

4. If 1 does not consider out ${ }_{2}$ possible, then $2 \& 3$ must consider $i n_{1}$ \& out ${ }_{1}$ possible
5. If 2 does not consider out t_{3} possible, then $1 \& 3$ must consider in n_{2} \& out t_{2} possible
6. If 3 does not consider out possible, then $1 \& 2$ must consider in ${ }_{3}$ \& out ors $_{3}$ possible

Another Puzzle

\[

\]

- If i considers out i_{i+1} possible, then it is common knowledge that out is not possible
- If i does not consider out t_{i+1} possible, then $i+1 \& i+2$ must consider $\mathrm{in}_{i} \&$ out $_{i}$ possible

Another Puzzle

\[

\]

- If i considers out t_{i+1} possible, then it is common knowledge that out t_{i} is not possible
- If i does not consider out t_{i+1} possible, then $i+1 \& i+2$ must consider $i n_{i} \&$ out $_{i}$ possible
- 1 does consider out t_{2} possible $\Longrightarrow 3$ does not consider out $_{1}$ possible $\Longrightarrow 2$ considers out ${ }_{3}$ possible $\Longrightarrow 1$ does not consider out t_{2} possible

Diagnosing the Issues

Moving away from a "flat" model....

Diagnosing the Issues

Moving away from a "flat" model....

- Describing ideally rational agents vs. explaining how ideally rational agents will interact. (where do the models come from?)

Diagnosing the Issues

Moving away from a "flat" model....

- Describing ideally rational agents vs. explaining how ideally rational agents will interact. (where do the models come from?)
- Rationality as a property of the players' choice vs. rationality as a property of the players' reasoning

Diagnosing the Issues

Moving away from a "flat" model....

- Describing ideally rational agents vs. explaining how ideally rational agents will interact. (where do the models come from?)
- Rationality as a property of the players' choice vs. rationality as a property of the players' reasoning
- We want "optimal choice" to be a parameter (maximize expected utility, minmax, minregret, heuristics, etc.).

Diagnosing the Issues

Moving away from a "flat" model....

- Describing ideally rational agents vs. explaining how ideally rational agents will interact. (where do the models come from?)
- Rationality as a property of the players' choice vs. rationality as a property of the players' reasoning
- We want "optimal choice" to be a parameter (maximize expected utility, minmax, minregret, heuristics, etc.).
- Dynamic logics are just better...

Ingredients of a Dynamic Analysis of Common Knowledge of Rationality

- Dynamic analysis of informational attitudes
- Incorporating practical reasoning
- Integrating the two aspects of rational strategic reasoning

Informative Actions

Informative Actions

Incorporate the new information φ

Informative Actions

Public Announcement: Information from an infallible source (! φ): $A \prec_{i} B$

Informative Actions

Public Announcement: Information from an infallible source $(!\varphi): A \prec_{i} B$

Conservative Upgrade: Information from a trusted source $(\uparrow \varphi): A \prec_{i} C \prec_{i} D \prec_{i} B \cup E$

Informative Actions

Public Announcement: Information from an infallible source $(!\varphi): A \prec_{i} B$

Conservative Upgrade: Information from a trusted source $(\uparrow \varphi): A \prec_{i} C \prec_{i} D \prec_{i} B \cup E$

Radical Upgrade: Information from a strongly trusted source
$(\Uparrow \varphi): A \prec_{i} B \prec_{i} C \prec_{i} D \prec_{i} E$

Dynamic Characterization of Informational Attitudes

$!\varphi_{1},!\varphi_{2},!\varphi_{3}, \ldots,!\varphi_{n}$ always reaches a fixed-point
$\Uparrow p \Uparrow \neg p \Uparrow p \cdots$
Contradictory beliefs leads to oscillations
$\uparrow \varphi, \uparrow \varphi, \ldots$
Simple beliefs may never stabilize
$\Uparrow \varphi, \Uparrow \varphi, \ldots$
Simple beliefs stabilize, but conditional beliefs do not
A. Baltag and S. Smets. Group Belief Dynamics under Iterated Revision: Fixed Points and Cycles of Joint Upgrades. TARK, 2009.

Ingredients of a Dynamic Analysis of Common Knowledge of Rationality

\checkmark Dynamic analysis of informational attitudes

- Incorporating practical reasoning

```
Background
```

R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games and Economic Behavior, 2010.

- Integrating the two aspects of rational strategic reasoning

Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather than a binary partition of what is in and what is out):

Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather than a binary partition of what is in and what is out): strategies are accumulated, deleted or neither.

Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather than a binary partition of what is in and what is out): strategies are accumulated, deleted or neither.

Example: RBEU (reasoning based expected utility):

Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather than a binary partition of what is in and what is out): strategies are accumulated, deleted or neither.

Example: RBEU (reasoning based expected utility):

- accumulate strategies that maximize expected utility for every possibly probability distribution
- delete strategies that do not maximize probability against any probability distribution

Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather than a binary partition of what is in and what is out): strategies are accumulated, deleted or neither.

Example: RBEU (reasoning based expected utility):

- accumulate strategies that maximize expected utility for every possibly probability distribution
- delete strategies that do not maximize probability against any probability distribution
- accumulated strategies must receive positive probability, deleted strategies must receive zero probability

RBEU: Example

L	L	
L		
T	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

RBEU: Example

	L	R
T	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

RBEU: Example

L	R	
T	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

RBEU: Example

L	R	
T	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

	L	R
	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

RBEU: Example

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

	L	R
T	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

$$
\begin{gathered}
S^{+}=\{L, R\} \\
S^{-}=\left\{B, M_{1}\right\}
\end{gathered}
$$

RBEU: Example

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

$$
\begin{gathered}
S^{+}=\{L, R\} \\
S^{-}=\left\{B, M_{1}\right\}
\end{gathered}
$$

RBEU: Example

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

$$
\begin{gathered}
S^{+}=\{L, R\} \\
S^{-}=\left\{B, M_{1}\right\}
\end{gathered}
$$

RBEU: Example

L	R	
T	1,1	1,1
M_{1}	0,0	1,0
M_{2}	2,0	0,0
B	0,2	0,0

$$
\begin{aligned}
& S^{+}=\{L\} \\
& S^{-}=\{B\}
\end{aligned}
$$

$$
\begin{gathered}
S^{+}=\{L, R\} \\
S^{-}=\left\{B, M_{1}\right\}
\end{gathered}
$$

$$
\begin{gathered}
S^{+}=\{L, R\} \\
S^{-}=\left\{B, M_{1}\right\}
\end{gathered}
$$

RBEU: Another Example

RBEU: Another Example

$$
\begin{gathered}
S^{+}=\{U\} \\
S^{-}=\emptyset
\end{gathered}
$$

RBEU: Another Example

$$
\begin{gathered}
S^{+}=\{U\} \\
S^{-}=\emptyset
\end{gathered}
$$

RBEU: Another Example

		L
R		
	1,1	1,0
	1,1	
	1,0	0,1

$$
\begin{gathered}
S^{+}=\{U\} \\
S^{-}=\emptyset
\end{gathered}
$$

$$
\begin{gathered}
S^{+}=\{U\} \\
S^{-}=\emptyset
\end{gathered}
$$

Ingredients of a Dynamic Analysis of Common Knowledge of Rationality

\checkmark Dynamic analysis of informational attitudes
\checkmark Incorporating practical reasoning © Background
R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games and Economic Behavior, 2010.

- Integrating the two aspects of rational strategic reasoning
$\underset{\substack{\text { initial } \\ \text { model }}}{\mathcal{M}_{0} \stackrel{!\varphi_{1}}{=} \mathcal{M}_{1} \stackrel{!\varphi_{2}}{=} \mathcal{M}_{2} \stackrel{!\varphi_{3}}{=} \cdots \stackrel{!\varphi_{n}}{=} \mathcal{M}_{f}}$
$\underset{\substack{\text { initial } \\ \text { model }}}{\mathcal{M}_{0}} \stackrel{\uparrow \varphi_{1}}{\Longrightarrow} \mathcal{M}_{1} \stackrel{\Uparrow \varphi_{2}}{\Longrightarrow} \mathcal{M}_{2} \stackrel{\Uparrow \varphi_{3}}{\Longrightarrow} \cdots \stackrel{\Uparrow \varphi_{n}}{\Longrightarrow} \mathcal{M}_{f}$
$\underset{\substack{\text { initial } \\ \text { model }}}{\mathcal{M}_{0} \stackrel{!\varphi_{1}}{\Longrightarrow} \mathcal{M}_{1} \stackrel{\Uparrow \varphi_{2}}{\Longrightarrow} \mathcal{M}_{2} \stackrel{\uparrow \varphi_{3}}{\Longrightarrow} \cdots \stackrel{\Uparrow \varphi_{n}}{\Longrightarrow} \mathcal{M}_{f}}$

Where do the φ_{k} come from?

Where do the φ_{k} come from? from the players practical reasoning/rational requirements

Our Framework

Strategic game: $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$

Our Framework

Strategic game: $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$
Model of a game: $\mathcal{M}_{G}=\langle W, \preceq, \sigma\rangle$ with $\sigma: W \rightarrow \Pi_{i \in N} S_{i}$

Our Framework

Strategic game: $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$
Model of a game: $\mathcal{M}_{G}=\langle W, \preceq, \sigma\rangle$ with $\sigma: W \rightarrow \Pi_{i \in N} S_{i}$

Strategies in Play

$S_{-i}\left(\mathcal{M}_{G}\right)=\left\{s_{-i} \in \Pi_{j \neq i} S_{j} \mid \exists w \in \operatorname{Min}_{\preceq}(W)\right.$ such that $\left.\sigma_{-i}(w)=s_{-i}\right\}$

Our Framework

Strategic game: $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$
Model of a game: $\mathcal{M}_{G}=\langle W, \preceq, \sigma\rangle$ with $\sigma: W \rightarrow \Pi_{i \in N} S_{i}$
Strategies in Play
$S_{-i}\left(\mathcal{M}_{G}\right)=\left\{s_{-i} \in \Pi_{j \neq i} S_{j} \mid \exists w \in \operatorname{Min}_{\preceq}(W)\right.$ such that $\left.\sigma_{-i}(w)=s_{-i}\right\}$
Categorization
$\mathbf{S}_{i}\left(\mathcal{M}_{G}\right)=\left(S_{i}^{+}, S_{i}^{-}\right)$where $S_{i}^{+} \cup S_{i}^{-} \subseteq S_{i}$ and
for each $a \in S_{i}$, if there is no $v \in W$ with $\sigma_{i}(v)=a$ then $a \in S_{i}^{-}$

Responding to a Categorization

$$
\uparrow\left\{\varphi_{1}, \varphi_{2}\right\}: A \cup E \prec B \prec C \cup D \prec F \cup G
$$

Responding to a Categorization

$$
\begin{aligned}
& \uparrow\left\{\varphi_{1}, \varphi_{2}\right\}: A \cup E \prec B \prec C \cup D \prec F \cup G \\
& \Uparrow\left\{\varphi_{1}, \varphi_{2}\right\}: A \prec E \prec B \prec C \cup D \prec F \cup G
\end{aligned}
$$

\[

\]

Remembering Reasons

	L	R
U	1,1	1,0
D	1,0	0,1

Discussion: Common Knowledge of Rationality

Common Knowledge of Rationality

Discussion: Common Knowledge of Rationality

Common Knowledge of Rationality

Discussion: Common Knowledge of Rationality

Common Knowledge of Rationality

Discussion: Common Knowledge of Rationality

Common Knowledge of Rationality

Baseline Result

$$
\begin{aligned}
& \tau: \mathbb{M} \times \wp\left(\mathcal{L}_{G}\right) \rightarrow \mathbb{M} \text {, write } \mathcal{M}^{\tau(\mathcal{X})} \text { for } \tau(\mathcal{M}, \mathcal{X}) \\
& \text { Let } \mathcal{X}_{\mathcal{M}}=\left\{\llbracket \varphi \rrbracket_{\mathcal{M}} \mid \varphi \in \mathcal{X}\right\} .
\end{aligned}
$$

Baseline Result

$\tau: \mathbb{M} \times \wp\left(\mathcal{L}_{G}\right) \rightarrow \mathbb{M}$, write $\mathcal{M}^{\tau(\mathcal{X})}$ for $\tau(\mathcal{M}, \mathcal{X})$
Let $\mathcal{X}_{\mathcal{M}}=\left\{\llbracket \varphi \rrbracket_{\mathcal{M}} \mid \varphi \in \mathcal{X}\right\}$. If $\mathcal{X}_{\mathcal{M}}=\mathcal{X}_{\mathcal{M}^{\tau(\mathcal{X})}}$ then $\tau\left(\mathcal{M}^{\tau(\mathcal{X})}, \mathcal{X}\right)=\tau(\mathcal{M}, \mathcal{X})$

Baseline Result

$\tau: \mathbb{M} \times \wp\left(\mathcal{L}_{G}\right) \rightarrow \mathbb{M}$, write $\mathcal{M}^{\tau(\mathcal{X})}$ for $\tau(\mathcal{M}, \mathcal{X})$
Let $\mathcal{X}_{\mathcal{M}}=\left\{\llbracket \varphi \rrbracket_{\mathcal{M}} \mid \varphi \in \mathcal{X}\right\}$.
If $\mathcal{X}_{\mathcal{M}}=\mathcal{X}_{\mathcal{M}^{\tau(\mathcal{X})}}$ then $\tau\left(\mathcal{M}^{\tau(\mathcal{X})}, \mathcal{X}\right)=\tau(\mathcal{M}, \mathcal{X})$
If $a \in S_{i}^{-}(\mathcal{M})$ then $\mathcal{M}^{\tau(\mathcal{X})} \models B \neg P_{i}^{a}$
If $a \in S_{i}^{+}(\mathcal{M})$ then $\mathcal{M}^{\tau(\mathcal{X})} \models \neg B \neg P_{i}^{a}$

Baseline Result

$$
\begin{aligned}
& \tau: \mathbb{M} \times \wp\left(\mathcal{L}_{G}\right) \rightarrow \mathbb{M} \text {, write } \mathcal{M}^{\tau(\mathcal{X})} \text { for } \tau(\mathcal{M}, \mathcal{X}) \\
& \text { Let } \mathcal{X}_{\mathcal{M}}=\left\{\llbracket \varphi \rrbracket_{\mathcal{M}} \mid \varphi \in \mathcal{X}\right\} . \\
& \text { If } \mathcal{X}_{\mathcal{M}}=\mathcal{X}_{\mathcal{M}}^{\tau(\mathcal{X})} \text { then } \tau\left(\mathcal{M}^{\tau(\mathcal{X})}, \mathcal{X}\right)=\tau(\mathcal{M}, \mathcal{X}) \\
& \text { If } a \in S_{i}^{-}(\mathcal{M}) \text { then } \mathcal{M}^{\tau(\mathcal{X})} \models B \neg P_{i}^{a} \\
& \text { If } a \in S_{i}^{+}(\mathcal{M}) \text { then } \mathcal{M}^{\tau(\mathcal{X})} \models \neg B \neg P_{i}^{a} \\
& S_{i}^{-}(\mathcal{M}) \subseteq S_{i}^{-}\left(\mathcal{M}^{\tau(D o(\mathcal{M}))}\right) \\
& S_{i}^{+}(\mathcal{M}) \subseteq S_{i}^{+}\left(\mathcal{M}^{\tau(D o(\mathcal{M}))}\right) \\
& S_{i}^{+}(\mathcal{M}) \supseteq S_{i}^{+}\left(\mathcal{M}^{\tau(D o(\mathcal{M}))}\right)
\end{aligned}
$$

Baseline Result

$$
\begin{aligned}
& \tau: \mathbb{M} \times \wp\left(\mathcal{L}_{G}\right) \rightarrow \mathbb{M} \text {, write } \mathcal{M}^{\tau(\mathcal{X})} \text { for } \tau(\mathcal{M}, \mathcal{X}) \\
& \text { Let } \mathcal{X}_{\mathcal{M}}=\left\{\llbracket \varphi \rrbracket_{\mathcal{M}} \mid \varphi \in \mathcal{X}\right\} . \\
& \text { If } \mathcal{X}_{\mathcal{M}}=\mathcal{X}_{\mathcal{M}^{\tau(\mathcal{X})}} \text { then } \tau\left(\mathcal{M}^{\tau(\mathcal{X})}, \mathcal{X}\right)=\tau(\mathcal{M}, \mathcal{X}) \\
& \text { If } a \in S_{i}^{-}(\mathcal{M}) \text { then } \mathcal{M}^{\tau(\mathcal{X})} \models B \neg P_{i}^{a} \\
& \text { If } a \in S_{i}^{+}(\mathcal{M}) \text { then } \mathcal{M}^{\tau(\mathcal{X})} \models \neg B \neg P_{i}^{a} \\
& S_{i}^{-}(\mathcal{M}) \subseteq S_{i}^{-}\left(\mathcal{M}^{\tau(D o(\mathcal{M}))}\right) \\
& S_{i}^{+}(\mathcal{M}) \subseteq S_{i}^{+}\left(\mathcal{M}^{\tau(D o(\mathcal{M}))}\right) \\
& S_{i}^{+}(\mathcal{M}) \supseteq S_{i}^{+}\left(\mathcal{M}^{\tau(D o(\mathcal{M}))}\right)
\end{aligned}
$$

Theorem. Suppose that G is a finite game and \mathcal{M}_{G} a (finite) initial model. If a categorization (method) is belief sensitive and monotonic on a upgrade sequence $\left(\mathcal{M}_{m}\right)_{m \in \mathbb{N}}$, then the upgrade stream stabilizes.

Related Ideas

Think of the choice rule as a predicate $\varphi(s, X, Y)$ expressing " s is 'optimal' in X given the other's choices Y "
K. Apt and J. Zvesper. The Role of Monotonicity in the Epistemic Analysis of Strategic Games. Games 1(4), 2010, pp. 381-394.

Look at general properties of choice rules
M. Trost. On the Equivalence of Iterated Application of a Choice Rule and Common Belief of Applying that Rule. Manuscript, 2010.

Discussion

Discussion

- players should not respond to every model change (eg., even rational players should not play differently in bisimilar models).

Discussion

- players should not respond to every model change (eg., even rational players should not play differently in bisimilar models).
- reasoning about what to do: choices may be accepted (there is a reason to play it), deleted (there is a reason to not play it) or neither (no reason either way)

Discussion

- players should not respond to every model change (eg., even rational players should not play differently in bisimilar models).
- reasoning about what to do: choices may be accepted (there is a reason to play it), deleted (there is a reason to not play it) or neither (no reason either way)
- many parameters to play with: optimal choice, type of update/upgrade, what announcements are "admissible" (the protocol)

Thank You!

Results

1. IA and common knowledge of admissibility diverge.
L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic Behavior (1992).

Results

1. IA and common knowledge of admissibility diverge.
2. There exist games in which assuming that admissibility is common knowledge does not provide players with sufficient information to determine which strategies should be eliminated on admissibility grounds.
L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic Behavior (1992).

Results

1. IA and common knowledge of admissibility diverge.
2. There exist games in which assuming that admissibility is common knowledge does not provide players with sufficient information to determine which strategies should be eliminated on admissibility grounds.
3. There exists games in which assuming that admissibility is common knowledge yields a contradiction (i.e., there is no model of a game where there is common knowledge of "admissible choice")
L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic Behavior (1992).

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{2}	Y_{3}
X_{1}	2,4	5,4	$-1,0$
X_{2}	3,4	2,4	$-2,0$
X_{3}	1,2	0,0	2,2
X_{4}	0,2	2,0	0,4

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{2}	Y_{3}
X_{1}	2,4	5,4	$-1,0$
X_{2}	3,4	2,4	$-2,0$
X_{3}	1,2	0,0	2,2
X_{4}	0,2	2,0	0,4

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{3}
X_{1}	2,4	$-1,0$
X_{2}	3,4	$-2,0$
X_{3}	1,2	2,2
X_{4}	0,2	0,4

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{3}
X_{1}	2,4	$-1,0$
X_{2}	3,4	$-2,0$
X_{3}	1,2	2,2
X_{4}	0,2	0,4

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{3}
X_{1}	2,4	$-1,0$
X_{2}	3,4	$-2,0$
X_{3}	1,2	2,2

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{3}
X_{1}	2,4	$-1,0$
X_{2}	3,4	$-2,0$
X_{3}	1,2	2,2

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}
X_{1}	2,4
X_{2}	3,4
X_{3}	1,2

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{2}	Y_{3}
X_{1}	2,4	5,4	$-1,0$
X_{2}	3,4	2,4	$-2,0$
X_{3}	1,2	0,0	2,2
X_{4}	0,2	2,0	0,4

$\left\{X_{2}, Y_{1}\right\}$ is the unique IA solution, but common knowledge of admissibility implies that players choose: $\left\{\Delta\left(X_{1}, X_{2}\right), \Delta\left(Y_{1}, Y_{2}\right)\right\}$.

Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of admissibility.

	Y_{1}	Y_{2}	Y_{3}
X_{1}	2,4	5,4	$-1,0$
X_{2}	3,4	2,4	$-2,0$
X_{3}	1,2	0,0	2,2
X_{4}	0,2	2,0	0,4

$\left\{X_{2}, Y_{1}\right\}$ is the unique IA solution, but common knowledge of admissibility implies that players choose: $\left\{\Delta\left(X_{1}, X_{2}\right), \Delta\left(Y_{1}, Y_{2}\right)\right\}$.

Where does common knowledge come from?
R. Cubitt and R. Sugden. Common Knowledge, Salience and Convention: A Reconstruction of David Lewis' Game Theory. Economics and Philosophy, 19, pgs. 175-210 2003..

Reason to Believe

$B_{i} \varphi$: " i believes φ "

Reason to Believe

$B_{i} \varphi$: " i believes φ " vs. $R_{i}(\varphi)$: " i has a reason to believe φ "

Reason to Believe

$B_{i} \varphi$: " i believes φ " vs. $R_{i}(\varphi)$: " i has a reason to believe φ "

- "Although it is an essential part of Lewis' theory that human beings are to some degree rational, he does not want to make the strong rationality assumptions of conventional decision theory or game theory." (CS, pg. 184).

Reason to Believe

$B_{i} \varphi$: " i believes φ " vs. $R_{i}(\varphi)$: " i has a reason to believe φ "

- "Although it is an essential part of Lewis' theory that human beings are to some degree rational, he does not want to make the strong rationality assumptions of conventional decision theory or game theory." (CS, pg. 184).
- Anyone who accept the rules of arithmetic has a reason to believe $618 \times 377=232,986$, but most of us do not hold have firm beliefs about this.

Reason to Believe

$B_{i} \varphi$: " i believes φ " vs. $R_{i}(\varphi)$: " i has a reason to believe φ "

- "Although it is an essential part of Lewis' theory that human beings are to some degree rational, he does not want to make the strong rationality assumptions of conventional decision theory or game theory." (CS, pg. 184).
- Anyone who accept the rules of arithmetic has a reason to believe $618 \times 377=232,986$, but most of us do not hold have firm beliefs about this.
- Definition: $R_{i}(\varphi)$ means φ is true within some logic of reasoning that is endorsed by (that is, accepted as a normative standard by) person $i \ldots \varphi$ must be either regarded as self-evident or derivable by rules of inference (deductive or inductive)

A indicates to i that φ

A is a "state of affairs"
A ind $_{i} \varphi$: i's reason to believe that A holds provides i's reason for believing that φ is true.
(A1)For all i, for all A, for all $\varphi:\left[R_{i}(A\right.$ holds $\left.) \wedge\left(A \operatorname{ind}_{i} \varphi\right)\right] \Rightarrow R_{i}(\varphi)$

Some Properties

Some Properties

- $\left[(A\right.$ holds $)$ entails $\left(A^{\prime}\right.$ holds $\left.)\right] \Rightarrow A$ ind $_{i}\left(A^{\prime}\right.$ holds $)$

Some Properties

- $\left[(A\right.$ holds $)$ entails $\left(A^{\prime}\right.$ holds $\left.)\right] \Rightarrow A$ ind $_{i}\left(A^{\prime}\right.$ holds $)$
- $\left[\left(A \operatorname{ind}_{i} \varphi\right) \wedge\left(A \operatorname{ind}_{i} \psi\right)\right] \Rightarrow A \operatorname{ind}_{i}(\varphi \wedge \psi)$

Some Properties

- $\left[(A\right.$ holds $)$ entails $\left(A^{\prime}\right.$ holds $\left.)\right] \Rightarrow A$ ind $_{i}\left(A^{\prime}\right.$ holds $)$
- $\left[\left(A \operatorname{ind}_{i} \varphi\right) \wedge\left(A \operatorname{ind}_{i} \psi\right)\right] \Rightarrow A \operatorname{ind}_{i}(\varphi \wedge \psi)$
- $\left[\left(A\right.\right.$ ind $_{i}\left[A^{\prime}\right.$ holds $\left.]\right) \wedge\left(A^{\prime}\right.$ ind $\left.\left._{i} x\right)\right] \Rightarrow A \operatorname{ind}_{i} \varphi$

Some Properties

- $\left[(A\right.$ holds $)$ entails $\left(A^{\prime}\right.$ holds $\left.)\right] \Rightarrow A$ ind $_{i}\left(A^{\prime}\right.$ holds $)$
- $\left[\left(A \operatorname{ind}_{i} \varphi\right) \wedge\left(A \operatorname{ind}_{i} \psi\right)\right] \Rightarrow A \operatorname{ind}_{i}(\varphi \wedge \psi)$
- $\left[\left(A\right.\right.$ ind $_{i}\left[A^{\prime}\right.$ holds $\left.]\right) \wedge\left(A^{\prime}\right.$ ind $\left.\left._{i} x\right)\right] \Rightarrow A \operatorname{ind}_{i} \varphi$
- $\left[\left(A\right.\right.$ ind $\left._{i} \varphi\right) \wedge(\varphi$ entails $\left.\psi)\right] \Rightarrow A$ ind $_{i} \psi$

Some Properties

- $\left[(A\right.$ holds $)$ entails $\left(A^{\prime}\right.$ holds $\left.)\right] \Rightarrow A$ ind $_{i}\left(A^{\prime}\right.$ holds $)$
- $\left[\left(A \operatorname{ind}_{i} \varphi\right) \wedge\left(A \operatorname{ind}_{i} \psi\right)\right] \Rightarrow A \operatorname{ind}_{i}(\varphi \wedge \psi)$
- $\left[\left(A\right.\right.$ ind $_{i}\left[A^{\prime}\right.$ holds $\left.]\right) \wedge\left(A^{\prime}\right.$ ind $\left.\left._{i} x\right)\right] \Rightarrow A$ ind $_{i} \varphi$
- $\left[\left(A_{\text {ind }}^{i} ;(\varphi) \wedge(\varphi\right.\right.$ entails $\left.\psi)\right] \Rightarrow A$ ind $_{i} \psi$
- $\left[\left(A \operatorname{ind}_{i} R_{j}\left[A^{\prime}\right.\right.\right.$ holds $\left.\left.]\right) \wedge R_{i}\left(A^{\prime} \operatorname{ind}_{j} \varphi\right)\right] \Rightarrow A \operatorname{ind}_{i} R_{j}(\varphi)$

Reflexive Common Indicator

Reflexive Common Indicator

- A holds $\Rightarrow R_{i}(A$ holds $)$

Reflexive Common Indicator

- A holds $\Rightarrow R_{i}(A$ holds $)$
- A ind $_{i} R_{j}(A$ holds $)$

Reflexive Common Indicator

- A holds $\Rightarrow R_{i}(A$ holds $)$
- A ind $_{i} R_{j}(A$ holds $)$
- $A \operatorname{ind}_{i} \varphi$

Reflexive Common Indicator

- A holds $\Rightarrow R_{i}(A$ holds $)$
- A ind $_{i} R_{j}(A$ holds $)$
- $A \operatorname{ind}_{i} \varphi$
- $\left(A \operatorname{ind}_{j} \psi\right) \Rightarrow R_{i}\left[A \operatorname{ind}_{j} \psi\right]$

Let $R^{G}(\varphi): R_{i} \varphi, R_{j} \varphi, \ldots, R_{i}\left(R_{j} \varphi\right), R_{j}\left(R_{i}(\varphi)\right), \ldots$ iterated reason to believe φ.

Let $R^{G}(\varphi): R_{i} \varphi, R_{j} \varphi, \ldots, R_{i}\left(R_{j} \varphi\right), R_{j}\left(R_{i}(\varphi)\right), \ldots$ iterated reason to believe φ.

Theorem. (Lewis) For all states of affairs A, for all propositions φ, and for all groups G : if A holds, and if A is a reflexive common indicator in G that φ, then $R^{G}(\varphi)$ is true.

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge")

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Example. Suppose there is an agent $i \notin G$ that is authoritative for each member of G.

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Example. Suppose there is an agent $i \notin G$ that is authoritative for each member of G. So, for $j \in G$, " i states to j that φ is true" indicates to j that φ.

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Example. Suppose there is an agent $i \notin G$ that is authoritative for each member of G. So, for $j \in G$, " i states to j that φ is true" indicates to j that φ. Suppose that separately and privately to each member of G, i states that φ and $R^{G}(\varphi)$ are true.

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Example. Suppose there is an agent $i \notin G$ that is authoritative for each member of G. So, for $j \in G$, " i states to j that φ is true" indicates to j that φ. Suppose that separately and privately to each member of G, i states that φ and $R^{G}(\varphi)$ are true. Then, we have $R^{i} \varphi$ and $R_{i}\left(R^{G}(\varphi)\right)$ for each $i \in G$.

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Example. Suppose there is an agent $i \notin G$ that is authoritative for each member of G. So, for $j \in G$, " i states to j that φ is true" indicates to j that φ. Suppose that separately and privately to each member of G, i states that φ and $R^{G}(\varphi)$ are true. Then, we have $R^{i} \varphi$ and $R_{i}\left(R^{G}(\varphi)\right)$ for each $i \in G$. But there is no common indicator that φ is true.

Lewis and Aumann

Lewis common knowledge that φ implies the iterated definition of common knowledge ("Aumann common knowledge"), but the converse is not generally true....

Example. Suppose there is an agent $i \notin G$ that is authoritative for each member of G. So, for $j \in G$, " i states to j that φ is true" indicates to j that φ. Suppose that separately and privately to each member of G, i states that φ and $R^{G}(\varphi)$ are true. Then, we have $R^{i} \varphi$ and $R_{i}\left(R^{G}(\varphi)\right)$ for each $i \in G$. But there is no common indicator that φ is true. The agents $j \in G$ may have no reason to believe that everyone heard the statement from i or that all agents in G treat i as authoritative.

