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“The fundamental insight of game theory [is] that a rational player
must take into account that the players reason about each other in
deciding how to play” [pg. 81]

R. Aumann and J. Dreze. Rational expectations in games. American Economic
Review, Vol. 98, pgs. 72 – 86 (2008).

Exactly how the players incorporate the fact that they are interacting
with other (actively reasoning) rational agents is the subject of much
debate.
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Reasoning in Games

I Brian Skyrms’ models of “dynamic deliberation”

I Ken Binmore’s analysis of “eductive reasoning”

I Robin Cubitt and Robert Sugden’s “common modes of reasoning”

Different framework, common thought: the “rational solutions” of a
game are the result of individual (rational) decisions in specific
informational “contexts”.
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Two Faces of Rationality

1. Rationality is a matter of reasons

2. Rationality is a matter of reliability

“Neither theme alone exhausts our notion of rationality. Reasons
without reliability seem emtpy, reliability without reasons seems blind.
In tandem these make a powerful unit, but how exactly are they related
and why?” (pg. 64)

R. Nozick. The Nature of Rationality. Princeton University Press, 1993.
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Two Faces of Rationality

1. Rationality is a matter of reasons

2. Rationality is a matter of reliability

“It is important to understand that we have two forms of irrationality in
this paper...For us, a player is rational if he optimizes and also rules
nothing out. So irrationality might mean not optimizing. But it can
also mean optimizing while not considering everything possible.”

(pg. 314)

A. Brandenburger, A. Friedenberg and H. J. Keisler. Admissibility in Games. Econo-
metrica, 76:2, 2008, pgs. 307 - 352.
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A player can be rationally criticized for

1. not choosing what is best or what is rationally permissible, given
one’s information. What counts as “best” or what is choice-worthy
is determined by the reasons that the players have and by the
normative facts that hold in a given context.

2. not reasoning to a “proper” context. There may be rational
pressure for or against making certain substantive assumptions
about the beliefs of one’s opponents, for instance to always
entertain the possibility that one of the players might not choose
optimally.
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Plan for Today

I Describing the “informational context” of a game

I A puzzle about admissibility

I Flat vs. dynamic analysis
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Describing the “Informational Context”

I Various states of information disclosure.

• ex ante, ex interim, ex post

I Various “types” of information:

• imperfect information about the play of the game
• incomplete information about the structure of the game
• strategic information (what will the other players do?)
• higher-order information (what are the other players thinking?)

I Varieties of informational attitudes

• hard (“knowledge”)
• soft (“beliefs”)
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Game Models

Game G

Strategy Space

Game Model

b

a

Q1: Can we always find a model
where Rat 6= ∅?

Q2: Can we characterize the
strategies that are always in Rat?
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I Q1: Can we always find a model
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I Q2: Can we characterize the
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Some Key Properties

I Knowledge of own choice
the agents choices are uniform in their information sets

I The structure of the game is commonly known
the map from states to strategy profiles is onto

I Common prior
all agents have the same prior probability function

S. Morris. The common prior assumption in economic theory. Economics and Philos-
ophy, 11, pgs. 227 - 254, 1995.

I Common Knowledge of “rational choice”
there is no “Ann-Bob path” that leads outside of Rat
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Other Natural Properties...

I Only play admissible strategies

I If two strategies are rational for an opponent, then neither can be
“ruled out”

(Privacy of Tie Breaking)

I Do not initially rule out any types of the other players
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...Lead to Puzzles and Paradoxes

L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic
Behavior (1992).

R. Cubitt and R. Sugden. Rationally Justiable Play and the Theory of Non-cooperative
games. Economic Journal, 104, pgs. 798 - 803, 1994.

R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of
common knowledge of rationality. Manuscript, 2011.

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games.
Studia Logica (2006).
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Admissibility

The condition that the players incorporate admissibility into their
rationality calculations seems to conflict with the condition that the
players think the other players are rational (there is a tension between
admissibility and strategic reasoning)

Does assuming that it is commonly known that players play only
admissible strategies lead to a process of iterated removal of weakly
dominated strategies? No!

L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic
Behavior (1992).
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Iterated Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T weakly dominates B
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Iterated Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

Then L strictly dominates R.
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Iterated Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

The IA set
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Iterated Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

But, now what is the reason for not playing B?
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

There is no model of this game with common knowledge of
admissibility.
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B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

The ”full” model of the game: B is not admissible given Ann’s
information
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

What is wrong with this model? asdf ad fa sdf a fsd asdf adsf adfs
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Moving to choice sets. asdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

Ann thinks: Bob has a reason to play L OR Bob has a reason to play R
OR Bob has not yet settled on a choice
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

Still there is no model with common knowledge that players have
admissibility-based reasonsasdf ad fa sdf a fsd asdf adsf adfs
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

there is a reason to play T provided Ann considers it possible that Bob
might play R (actually three cases to consider here)

Eric Pacuit: 14/44

http://ai.stanford.edu/~epacuit


Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

But there is a reason to play R provided it is possible that Ann has a
reason to play B
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

But, there is no reason to play B if there is a reason for Bob to play R.
ada dad asd a ds asd ad d
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

R can be ruled out unless there is a possibility that B will be played.
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

there is no reason to play B if R is a possible play for Bob.
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Common Knowledge of Admissibility

Bob

A
nn

T L R

T 1,1 1,0 U

B 1,0 0,1 U

T , L T ,R T , {L,R}

B, L B,R B, {L,R}

{T ,B}, L {T ,B},R {T ,B}, {L,R}

We can check all the possibilities and see we cannot find a model...asdf
ad fa sdf a fsd asdf adsf adfs
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More Puzzles

R. Cubitt and R. Sugden. Rationally Justiable Play and the Theory of Non-cooperative
games. Economic Journal, 104, pgs. 798 - 803, 1994.

R. Cubitt and R. Sugden. Common reasoning in games: A Lewisian analysis of
common knowledge of rationality. Manuscript, 2011.
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Another Puzzle
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Another Puzzle

U in2 out2 U in2 out2

in1 1, 1, 1 1, 1, 1 in1 1, 1, 1 1, 0, 1

out1 1, 1, 1 0, 1, 1 out1 1, 1, 0 0, 0, 0

in3 out3

There is no Bayesian model of the above game satisfying
privacy of tie-breaking.

If 2 considers out3 possible, then it is common knowledge
that out2 is not possible

If 3 considers out1 possible, then it is common knowledge
that out3 is not possible
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in3 out3

4. If 1 does not consider out2 possible, then 2 & 3 must
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U in2 out2 U in2 out2

in1 1, 1, 1 1, 1, 1 in1 1, 1, 1 1, 0, 1

out1 1, 1, 1 0, 1, 1 out1 1, 1, 0 0, 0, 0

in3 out3

I If i considers outi+1 possible, then it is common
knowledge that outi is not possible

I If i does not consider outi+1 possible, then i + 1 & i + 2
must consider ini & outi possible

1 does consider out2 possible =⇒ 3 does not consider
out1 possible =⇒ 2 considers out3 possible =⇒ 1 does
not consider out2 possible
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in1 1, 1, 1 1, 1, 1 in1 1, 1, 1 1, 0, 1

out1 1, 1, 1 0, 1, 1 out1 1, 1, 0 0, 0, 0

in3 out3

I If i considers outi+1 possible, then it is common
knowledge that outi is not possible

I If i does not consider outi+1 possible, then i + 1 & i + 2
must consider ini & outi possible

I 1 does consider out2 possible =⇒ 3 does not consider
out1 possible =⇒ 2 considers out3 possible =⇒ 1 does
not consider out2 possible
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Diagnosing the Issues

Moving away from a “flat” model....

I Describing ideally rational agents vs. explaining how ideally
rational agents will interact. (where do the models come from?)

I Rationality as a property of the players’ choice vs. rationality as a
property of the players’ reasoning

I We want “optimal choice” to be a parameter (maximize expected
utility, minmax, minregret, heuristics, etc.).

I Dynamic logics are just better...
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Ingredients of a Dynamic Analysis of Common Knowledge
of Rationality

I Dynamic analysis of informational attitudes

I Incorporating practical reasoning

R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games

and Economic Behavior, 2010.

I Integrating the two aspects of rational strategic reasoning
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Informative Actions

A

B

C

D

E

ϕ

Public Announcement: Information from an infallible source
(!ϕ): A ≺i B

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Radical Upgrade: Information from a strongly trusted source
(⇑ϕ): A ≺i B ≺i C ≺i D ≺i E
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Dynamic Characterization of Informational Attitudes

!ϕ1, !ϕ2, !ϕ3, . . . , !ϕn

always reaches a fixed-point

⇑p ⇑¬p ⇑p · · ·
Contradictory beliefs leads to oscillations

↑ϕ, ↑ϕ, . . .
Simple beliefs may never stabilize

⇑ϕ,⇑ϕ, . . .
Simple beliefs stabilize, but conditional beliefs do not

A. Baltag and S. Smets. Group Belief Dynamics under Iterated Revision: Fixed Points
and Cycles of Joint Upgrades. TARK, 2009.
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Ingredients of a Dynamic Analysis of Common Knowledge
of Rationality

X Dynamic analysis of informational attitudes

I Incorporating practical reasoning Background

R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games
and Economic Behavior, 2010.

I Integrating the two aspects of rational strategic reasoning
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Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather
than a binary partition of what is in and what is out):

strategies are
accumulated, deleted or neither.

Example: RBEU (reasoning based expected utility):

I accumulate strategies that maximize expected utility for every
possibly probability distribution

I delete strategies that do not maximize probability against any
probability distribution

I accumulated strategies must receive positive probability, deleted
strategies must receive zero probability
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RBEU: Example

L R

T 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

L R

T 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

L R

T 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

S+ = {L}
S− = {B}

S+ = {L,R}
S− = {B,M1}

S+ = {L,R}
S− = {B,M1}
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RBEU: Another Example

L R

U 1,1 1,0

D 1,0 0,1

L R

U 1,1 1,0

D 1,0 0,1

S+ = {L}
S− = {B}

S+ = {L,R}
S− = {B,M1}
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RBEU: Another Example

L R

U 1,1 1,0

D 1,0 0,1

L R

U 1,1 1,0

D 1,0 0,1

S+ = {U}
S− = ∅

S+ = {L,R}
S− = {B,M1}
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RBEU: Another Example

L R

U 1,1 1,0

D 1,0 0,1
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U 1,1 1,0

D 1,0 0,1
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Ingredients of a Dynamic Analysis of Common Knowledge
of Rationality

X Dynamic analysis of informational attitudes

X Incorporating practical reasoning Background

R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games
and Economic Behavior, 2010.

I Integrating the two aspects of rational strategic reasoning
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M0 M1 M2 Mf· · ·!ϕ1 !ϕ2 !ϕ3 !ϕn

fixed-pointinitial
model

Oi (S)
Pj(S ′)
· · ·

Oj(T )
Pj(T ′)
· · ·

Oi (S)
Pj(S ′)
· · ·

nothing
new

Where do the ϕk come from? from the players practical
reasoning/rational requirements
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Our Framework

Strategic game: G = 〈N, {Si}i∈N , {ui}i∈N〉

Model of a game: MG = 〈W ,�, σ〉 with σ : W → Πi∈NSi

Strategies in Play

S−i (MG ) = {s−i ∈ Πj 6=iSj | ∃w ∈ Min�(W ) such that σ−i (w) = s−i}

Categorization

Si (MG ) = (S+
i , S

−
i ) where S+

i ∪ S−i ⊆ Si and

for each a ∈ Si , if there is no v ∈W with σi (v) = a then a ∈ S−i
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Responding to a Categorization

ϕ2

ϕ1
A B

C D
E

F G

↑{ϕ1, ϕ2} : A ∪ E ≺ B ≺ C ∪ D ≺ F ∪ G

⇑{ϕ1, ϕ2} : A ≺ E ≺ B ≺ C ∪ D ≺ F ∪ G
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L R

U 1,1 1,0

D 1,0 0,1

u, L u,R

d , L d ,R

M0

d , L d ,R

u, L u,R

M1

↑D0

d , L d ,R

u,R

u, L

M2

↑D1

d ,R

u,R

u, L d , L

M3

↑D2
u, L u,R

d , L d ,R

M4 =M0

↑D3 ↑D0
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Remembering Reasons

L R

U 1,1 1,0

D 1,0 0,1
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d ,R
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d , L
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⇑D1
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Discussion: Common Knowledge of Rationality
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Baseline Result

τ : M× ℘(LG )→M, write Mτ(X ) for τ(M,X )

Let XM = {[[ϕ]]M | ϕ ∈ X}.

If XM = XMτ(X ) then τ(Mτ(X ),X ) = τ(M,X )

If a ∈ S−i (M) then Mτ(X ) |= B¬Pa
i

If a ∈ S+
i (M) then Mτ(X ) |= ¬B¬Pa

i

S−i (M) ⊆ S−i (Mτ(Do(M)))
S+
i (M) ⊆ S+

i (Mτ(Do(M)))
S+
i (M) ⊇ S+

i (Mτ(Do(M)))

Theorem. Suppose that G is a finite game and MG a (finite) initial
model. If a categorization (method) is belief sensitive and monotonic
on a upgrade sequence (Mm)m∈N, then the upgrade stream stabilizes.
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Related Ideas

Think of the choice rule as a predicate ϕ(s,X ,Y ) expressing “s is
‘optimal’ in X given the other’s choices Y ”

K. Apt and J. Zvesper. The Role of Monotonicity in the Epistemic Analysis of Strategic
Games. Games 1(4), 2010, pp. 381–394.

Look at general properties of choice rules

M. Trost. On the Equivalence of Iterated Application of a Choice Rule and Common
Belief of Applying that Rule. Manuscript, 2010.
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Discussion

I players should not respond to every model change (eg., even
rational players should not play differently in bisimilar models).

I reasoning about what to do: choices may be accepted (there is a
reason to play it), deleted (there is a reason to not play it) or
neither (no reason either way)

I many parameters to play with: optimal choice, type of
update/upgrade, what announcements are “admissible” (the
protocol)
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Thank You!
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Results

1. IA and common knowledge of admissibility diverge.

2. There exist games in which assuming that admissibility is common
knowledge does not provide players with sufficient information to
determine which strategies should be eliminated on admissibility
grounds.

3. There exists games in which assuming that admissibility is common
knowledge yields a contradiction (i.e., there is no model of a game
where there is common knowledge of “admissible choice”)

L. Samuelson. Dominated Strategies and Common Knowledge. Games and Economic
Behavior (1992).
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Common Knowledge of Admissibility

Theorem Iterated admissibility is not equivalent to common knowledge of

admissibility.

Y1 Y2 Y3

X1 2,4 5,4 -1,0

X2 3,4 2,4 -2,0

X3 1,2 0,0 2,2

X4 0,2 2,0 0,4
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X3 1,2 0,0 2,2
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{X2,Y1} is the unique IA solution, but common knowledge of
admissibility implies that players choose: {∆(X1,X2),∆(Y1,Y2)} .
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Where does common knowledge come from?

R. Cubitt and R. Sugden. Common Knowledge, Salience and Convention: A Recon-
struction of David Lewis’ Game Theory. Economics and Philosophy, 19, pgs. 175-210
, 2003..
Back
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Reason to Believe

Biϕ: “i believes ϕ”

vs. Ri (ϕ): “i has a reason to believe ϕ”

I “Although it is an essential part of Lewis’ theory that human
beings are to some degree rational, he does not want to make the
strong rationality assumptions of conventional decision theory or
game theory.” (CS, pg. 184).

I Anyone who accept the rules of arithmetic has a reason to believe
618× 377 = 232, 986, but most of us do not hold have firm beliefs
about this.

I Definition: Ri (ϕ) means ϕ is true within some logic of reasoning
that is endorsed by (that is, accepted as a normative standard by)
person i ...ϕ must be either regarded as self-evident or derivable by
rules of inference (deductive or inductive)

Back
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A indicates to i that ϕ

A is a “state of affairs”

A indi ϕ: i ’s reason to believe that A holds provides i ’s reason for
believing that ϕ is true.

(A1)For all i , for all A, for all ϕ: [Ri (A holds) ∧ (A indi ϕ)]⇒ Ri (ϕ)

Back
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Some Properties

I [(A holds) entails (A′ holds)]⇒ A indi (A′ holds)

I [(A indi ϕ) ∧ (A indiψ)]⇒ A indi (ϕ ∧ ψ)

I [(A indi [A
′ holds]) ∧ (A′ indix)]⇒ A indiϕ

I [(A indiϕ) ∧ (ϕ entails ψ)]⇒ A indiψ

I [(A indi Rj [A
′ holds]) ∧ Ri (A′ indjϕ)]⇒ A indiRj(ϕ)
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Reflexive Common Indicator

I A holds ⇒ Ri (A holds)

I A indi Rj(A holds)

I A indi ϕ

I (A indi ψ)⇒ Ri [A indj ψ]
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Let RG (ϕ): Riϕ,Rjϕ, . . ., Ri (Rjϕ), Rj(Ri (ϕ)), . . .
iterated reason to believe ϕ.

Theorem. (Lewis) For all states of affairs A, for all propositions ϕ, and
for all groups G : if A holds, and if A is a reflexive common indicator in
G that ϕ, then RG (ϕ) is true.
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Lewis and Aumann

Lewis common knowledge that ϕ implies the iterated definition of
common knowledge (“Aumann common knowledge”)

, but the converse
is not generally true....

Example. Suppose there is an agent i 6∈ G that is authoritative for
each member of G . So, for j ∈ G , “i states to j that ϕ is true”
indicates to j that ϕ. Suppose that separately and privately to each
member of G , i states that ϕ and RG (ϕ) are true.Then, we have R iϕ
and Ri (RG (ϕ)) for each i ∈ G . But there is no common indicator that
ϕ is true. The agents j ∈ G may have no reason to believe that
everyone heard the statement from i or that all agents in G treat i as
authoritative.
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